Using stochastic language models ( SLM ) to
نویسندگان
چکیده
Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity timelocked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.
منابع مشابه
A Stochastic Parser Based on an SLM with Arboreal Context Trees
In this paper, we present a parser based on a stochastic structured language model (SLM) with a exible history reference mechanism. An SLM is an alternative to an n-gram model as a language model for a speech recognizer. The advantage of an SLM against an n-gram model is the ability to return the structure of a given sentence. Thus SLMs are expected to play an important part in spoken language ...
متن کاملTraining Statistical Language Models from Grammar-Generated Data: A Comparative Case-Study
Statistical language models (SLMs) for speech recognition have the advantage of robustness, and grammar-based models (GLMs) the advantage that they can be built even when little corpus data is available. A known way to attempt to combine these two methodologies is first to create a GLM, and then use that GLM to generate training data for an SLM. It has however been difficult to evaluate the tru...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملUsing stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain
Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have...
متن کاملUsing stochastic language models ( SLM ) to map lexical , syntactic , and
Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017